登陆注册
8392100000011

第11章 分子动力学模拟概述(1)

4.1基本原理

分子动力学模拟(moleculardynamicssimulations)是一种用来计算一个经典多体体系的平衡和传递性质的方法。这里的经典意味着组成粒子的核心运动遵守经典力学定律,这对于许多体系是一个很好的近似。只有当处理到一些较轻的原子或分子(He,H2,D2)的平动、转动或振动频率满足h>kBT的振动时,才需要考虑量子效应。

考虑含有N个分子的运动体系,系统的能量为系统中分子的动能与系统总势能的和。其总势能为分子中各原子位置的函数(,,,)12nUrrr。通常势能可分为分子间(或分子内原子间)的范德华作用(vdw)与分子内部势能(internal,int)两大部分:

vdwintUUU(4-1)范德华作用一般可将其近似为各原子对间的范德华作用的加和:

依据经典力学,系统中任一原子i所受之力为势能的梯度:

由牛顿运动定律可得i原子的加速度为:

将牛顿运动定律方程式对时间积分,可预测i原子经过时间t后的速度与位置:

i式中,v为速度,上标“0”为各物理量的初始值。

分子动力学计算的基本原理,就是利用牛顿运动定律。先由系统中各分子的位置计算系统的势能,再计算系统中各原子所受的力及加速度,然后令上式中的tt,则可得到经过t后各分子的位置及速度。重复以上的步骤,由新的位置计算系统的势能,计算各原子所受的力及加速度,预测再经过t后各分子的位置及速度……如此反复循环,可得到各时间下系统中分子运动的位置、速度及加速度等资料。一般将各时间下的分子位置称为运动轨迹(trajectory)。

4.2牛顿运动方程式的数值解法

在分子动力学中必需求解(4-5)式的牛顿运动方程以计算速度与位置,有限差分方法(finitedifferencemethods)常被用来解具有连续势能函数的分子动力学轨迹,也就是速度与位置。其基本思路就是把积分划分为许多小段,在时间的间隔上为固定的t,在t时刻,粒子受到的总作用力是其和其它粒子相互作用的向量之和。从粒子受到的力,我们可以确定粒子的加速度,结合t时刻的位置和速度得到t+t时刻新的位置和速度。这里假定在时间步长t范围内粒子受到的力是不变的。再计算在新的位置粒子受到的力,继而得到t+2t时刻的新位置和速度,这样周而复始的计算就可以得到粒子运动的轨迹。

利用有限差分方法来积分运动方程的算法有好多种,其中有许多在分子动力学的计算中被广泛地应用。在所有的算法中都假定位置和动力学性质(如速度、加速度等)可以通过Taylor展开式表示:

其中,v(t)是速度(位置对时间的一阶微分);a(t)是加速度(二阶微分),b(t)

是三阶微分,等等。Verlet算法[193]是在分子动力学模拟中最广泛使用的积分运动方程的算法。Verlet算法利用t时刻的位置和加速度,以及前一时刻的位置r(tt),来计算新时刻tt的位置r(tt),我们给出这些性质和速度在t时刻的相互关系。

把这两个方程相加:

r(tt)2r(t)r(tt)t2a(t)(4-11)在Verlet积分算法中不显含速度,速度可以用很多方法来计算,如一个最简单的方法:

v(t)r(tt)r(tt)/2t(4-12)另外,速度还可以利用半个步长ttVerlet算法的应用是很直接的,并且所需的内存也不是很多,包括两组位置〔r(t)和r(tt)〕以及加速度a(t)。Verlet算法的缺陷之一是位置r(tt)的确定利用了较小项〔t2a(t)〕和两个较大项[2r(t)和r(tt)]的差值,这将导致计算精确性的降低。

而且,在方程中,Verlet算法缺乏精确的速度计算项使它获得速度很困难,并且速度实际上是在下一步位置确定后才能得到。另外,Verlet算法不是自我开始的(self-start),新的位置是通过当前时刻位置r(t)和前一时刻位置r(tt)获得的,在t=0时刻,很显然只有一组位置,因而利用其它一些方法获得tt的位置是很必要的。一种获得r(tt)的方法是利用Taylor展开,如方程(4-6)在第一项截断,则r(t)r(0)tv(0)。

随后的跳蛙法(leap-frog)[193]是对Verlet算法进行了一些改进:

应用跳蛙算法,首先要利用tt这样就“跳过”位置给出了tt21时刻的速度,位置则跳过速度给出了tt时刻的新位置,从而为tt23时刻的速度做了准备,等等。相对于传统的Verlet算法,跳蛙算法有两个优点:它显含了速度的计算,而且不需要计算两个较大数的差值。然而,它的明显缺点就是位置和速度并不是同时确定的,这就意味着在确定位置的同时计算动能对总能量的贡献是不可能的,而位置的确定就同时确定了势能对总能量的贡献。

速度Verlet(VelocityVerlet)算法[194]同时给出了位置、速度和加速度,而没有任何精确度的损失:

Beeman算法对于速度给出了更加精密的表达式,因为动能是直接从速度计算得到的,所以它通常给出较好的能量守恒。然而它的表达式比Verlet更加复杂,在计算过程中就需要更多的计算机时。

4.3周期性边界条件

正确模拟边界或边界作用对于模拟方法是极为重要的,因为边界条件可以利用相对较小的分子来计算“宏观”性质。边界条件的重要性可以利用下面简单的性质来加以说明。假设我们有1个1L的容器,在室温条件下充满水,这个立方体容器中含有水分子的个数为3.31025个,水分子与器壁的相互作用可以延伸到10个分子直径的大小,水分子的直径大概为2.8,与边界碰撞的水分子的个数为21019。所以,在150万个水分子中只有1个受到容器壁的影响。在MC和MD模拟中,粒子的个数要远远小于10251026,并且通常要小于1000个。在一个不超过1000个分子的体系中,它们都不包含在和容器壁相互作用的粒子中。显然,用容器中1000个水分子来获得“宏观(bulk)”性质是不太正确的。可供选择的方法是去掉(dispensewith)容器。

执行分子动力计算通常选取一定数目的分子,将其置于一个立方体的盒子里。

但执行的计算必需与实际的体系相符,通常实验的系统密度为必须满足的条件。设立方体盒子的边长为L,则其体积为V=L3。若分子的质量为m,则N个分子系统的密度为:

计算系统的密度应等于实验所测定的密度,以此作为调整盒长的依据。以水分子系统为例,假设执行含有1000个水分子的动力学模拟计算,水的密度为1g/cm3。则L=3.1010-7cm=31(4-23)为使计算中系统的密度维持恒定,通常采用周期性边界条件(periodboundarycondition)。周期性边界条件使利用较少粒子进行宏观性质的模拟成为可能。在周期性边界条件下,粒子所受到的力和宏观液体中粒子受到的力是一样的。考虑立方体盒子中的粒子,它在各种方向重复以给出周期性排列。图4-1给出了一个二维盒子,其中,每个盒子周围有8个邻近盒子,这样在三维中每个盒子周围就有26个近邻。

镜像盒子中粒子的坐标可以简单地用加上或减去盒长的整数倍计算。在图4-1中给出,如果模拟过程中一个粒子离开盒子,则从相对应的边上有一个粒子进入盒子,因而在整个模拟过程中体系的总粒子数保持不变,即密度不变,符合实际的要求。尽管在计算机模拟中已广泛地使用周期性边界条件,但是它确实还存在着一些不足。周期性晶胞的一个很显着的不足是它不能获得大于晶胞长度的波动,比如接近于液-汽临界点。

4.4截断半径与最近镜像

MD模拟中最耗时的部分是能量最小化中非键相互作用和(或)力的计算。在力场模拟中键长伸缩,键角弯曲和二面角扭曲的个数正比于原子的个数,而非键相互作用项的个数随着原子个数平方的增加而增加,因此它的数量级为N2。原则上,非键相互作用在体系中应当对每两对原子间都进行计算,然而在模型中这一点还没有完全实现。Lennard-Jones势能函数随着距离的衰减很快,在2.5时的Lennard-Jones势大概是1.0时的1%。解决非键相互作用最普遍的方法就是利用截断半径和最小镜像方案。在最小镜像方案中,每个原子最多只能“看到”体系中每个原子的一个镜像(通过周期性边界条件无限重复)。如图4-2所表示,只需要计算距离最近原子或镜像之间的能量和(或)力就可以。比如,计算分子1与3的作用力,是取与分子1最近距离的镜像分子3。在所有镜像系统中,分子1和3距离最近的是模拟系统中分子1与D盒中的分子3,而非模拟系统中的分子1与分子3。同样的,计算分子3与分子1的作用是取模拟系统中的分子3与E盒中的分子1。

由于在计算中利用最近镜像的概念,因此就需要采用截断半径(cut-offradius)的方法来计算远程相互作用力。当利用截断半径时,如果原子对之间的距离大于截断半径,则它们之间的相互作用为零,当然同时也要考虑最近镜像。如果利用周期性边界条件,则截断半径不应太大,否则它将看到自身的镜像,那么同一个原子将被计算两次。这就暗示,在模拟立方体盒子中的液态体系时,截断半径不能大于立方盒子的一半,长方体晶胞中截断半径不能大于长方体最小边长的一半。对于分子的模拟,截断半径的上限受到分子大小的影响。模拟中非键相互作用如果只考虑Lennard-Jones势能函数,截断半径就不应过大,用2.5的截断半径就会带来一定的误差。然而,当考虑长程静电相互作用时,截断半径必须要大,事实上证明此时利用多大的截断半径都是有误差的,一般的原子所选取的静电相互作用的截断半径约为10左右,但这只是一个简单的估计,对于不同的原子是不能一概而论的。

一般的非键势能函数在所选取的截断半径处势能值并不为零。因此,分子动力学计算中就会出现能量不连续的情况。处理这种问题的方法,通常将势能函数乘上一个开关函数(switchingfunction)以弥补这一缺点。设截断半径为Rc,开关函数的起始点为Rs,则该函数S(r)之形式为:

同类推荐
  • 科学新视野

    科学新视野

    《科学新视野:世界前沿科技》有着全新的视角,详细讲述地质、航天、环保、考古、能源与材料、社会、生物技术、天文、智能等方面的最新科学发现,并配有大量精美图片,带领读者进入一个神奇而有趣的科技大世界。人类社会的发展史实际上就是一部科技发展史。有人曾经这样贴切地形容过科学:“从茹毛饮血的洪荒时代进入到高速发展的信息数字时代,科技充分显示了它强大无比的穿透力和覆盖面。科技的力量不可否认。它像一把奇异的剑,化腐朽为神奇,极大地促进了生产力的发展,对人类社会的发展直到了有利的助推作用。它加速了社会的演化,并影响到人类生产生活的各个方面。可以说,高科技极大地改变了人类社会的面貌,加快了人类文明发展的进程。
  • 地理中的自然奇观

    地理中的自然奇观

    地球是人类赖以生存的星球,而其自然界在亿万年的沧海桑田造就了无数令人震撼的自然奇观,它们在大自然浩瀚无际的舞台上演绎着地球不老的传奇。本书是一部以地理知识为题材的社科读物,内容新颖独特,并以细腻的语言,形象的描述,将那一幕幕壮丽的景色展现于青少年读者眼前,以激发他们学习地理的兴趣和愿望。
  • 不可不知的万物简史

    不可不知的万物简史

    这是一部有关现代科学发展史的既通俗易懂又引人入胜的书,作者用清晰明了、幽默风趣的笔法,将宇宙大爆炸到人类文明发展进程中所发生的繁多妙趣横生的故事一一收入笔下。惊奇和感叹组成了本书,历历在目的天下万物组成了本书,益于人们了解大千世界的无穷奥妙,掌握万事万物的发展脉络。
  • 20世纪大揭谜

    20世纪大揭谜

    本书包括“跨世纪的德雷福斯冤案揭秘”、“揭开图坦卡蒙陵墓之谜”、“赫鲁晓夫秘密报告出台内幕”、“黑手党:从意大利到美国”等内容。
  • 海洋之门:海岸与海湾

    海洋之门:海岸与海湾

    主要介绍了世界著名海岸与海湾,包括海岸线的轮廓和海湾的分布、成因和分类等,对于青少年了解海洋与海岸、海湾知识有很大帮助。
热门推荐
  • 网游之持剑杀手

    网游之持剑杀手

    在《血雨江湖》里的四大神级玩家——逆龙,隐退了整整一年。随着《梦》的开启,逆龙再次回到了玩家们的视线中。这次在经过了一年的消沉与思通后,他会在游戏里有怎样的表现,那些老对手们又会和他有着怎样的故事。而现实中因为自己的一句“退出杀手界”后,真的能了断那些恩怨吗?本书是传统虚拟网游,新人新作求收藏求推荐。
  • 网游之卡神

    网游之卡神

    游戏卡顿,延迟,掉线!这些网络游戏最忌讳的毛病,在展晨手里却成了最有利的手段!让我们看看卡成外挂一般的存在如何在游戏中纵横!
  • 恶魔王子的拽公主

    恶魔王子的拽公主

    恶魔的他,拽拽的她,会在校园里擦出怎样的火花呢?让我们拭目以待吧!!!!
  • 先做人后做事

    先做人后做事

    先做人后做事,做好了人,才能做事。这是从古至今沿用下来的一条铁律。这条铁律启示我们:做人首先要有好品质。这是做人的基础,有了这个基础,做人就不会偏离正道太远。做人要有正直善良的品质,要有博大宽容的胸怀。做人要学会选择与放弃。人生就是在不断选择和放弃中度过的,选学校,选专业、选朋友、选职业、选伴侣……每一次选择都表示着对其他同类事物的放弃。人生有很多不可兼得的东西,只有选择、会放弃,才能获得更多。
  • 庶女神偷

    庶女神偷

    被男友算计,死在了小三的枪下,重生后,她发誓绝不动情。大婚之夜,被未婚夫下毒抛尸,她嘴角扬起一抹冷意。口不能言却能用音乐杀人,一曲,她惊艳天下。“你居然怀了他的孩子,给我喝了它!”心爱的男人的一碗毒药顷刻间让她绝望不已。原来,原来……这一次又是她自作多情,可笑!再次被情所伤,她消失在众人的视线,五年后,她携子华丽归来,从此天下大乱。“求你回到我身边。”这一刻,这个聚万千宠爱于一身的男子当众对花翎屈膝。花翎冷冷的看了他一眼,眼角勾起一个冷冽的弧度,樱唇轻启:“滚!”
  • 复仇之路:女王重生归来

    复仇之路:女王重生归来

    她,是遭男友背叛重生的复仇女王。他,是所有女生的梦中情人。他和她会有何交集呢?复仇之路有何困难艰辛呢……
  • 废材神偷绝世毒医四小姐

    废材神偷绝世毒医四小姐

    一朝重生,昔日炼丹神尊成为不能修炼的废材四小姐,还是一个傻子!刚穿越,就被扔到乱葬岗?让人欺凌?放心!竟然用了你的身体,我一定会为你报仇雪恨!
  • 龙御天下

    龙御天下

    一个王朝的覆灭造就了一个怀有恨意并立志复国的孩子,一个从地球穿越过来的孩子与之相伴。一起学习,一起游历,一起复国,然而性格的差异,最终将两个手足一样的兄弟送到了对立,又一场颠覆之战,兄弟之战就此产生了……
  • 异界游戏之王

    异界游戏之王

    公元2264年,杨继华博士研究出把人的灵魂抽离身体后,可以通过科技的手段获得魔法、内力等力量,为了实验这个科技成果,当世五大强国联手开发了一款游戏《实验》,把众多玩家的灵魂抽离并带到游戏中,从这些灵魂中寻找一个实验品。柴信是一名高中生,暑假无事开始玩起了《实验》,没想到成为了这个实验的小白鼠,在一次使用传送阵时发生了意外,柴信从游戏中穿越到了异界,迎接他的是……
  • 我不只是修炼者

    我不只是修炼者

    黎锦今天惊呆了!先是好好的,被一支分盘笔砸中,创造了一个神幻的大陆,第二天早上,自己穿越进去了。无聊?用笔画几只元兽随便打打太弱?用笔写下提升修为太无敌?创造几个神人,然后干掉创世神的生活就是这么枯燥乏味