登陆注册
8884900000018

第18章 云和降水微物理学

大气中的水汽凝结而成的云滴很小,半径大约10微米,浓度为每升一万至一百万个,下降的速度约1厘米/秒,通常比云中上升的气流速度小得多,因而云滴不能落出云底。即使离开云底而下降,也会在不饱和的空气中迅速蒸发而消失。只有当云滴通过各种微物理过程,集聚和转化成为降水粒子后,才能降落到地面。

成云致雨要经过一系列复杂的微物理过程:湿空气上升膨胀冷却,其中的水汽达到饱和,并在一些吸湿性强的云凝结核上,凝结而成初始云滴的凝结核化过程;云中的过冷水滴或水汽,在冰核上冻结或凝华以及在-40℃以下,自然冻结成初始冰晶胚胎的冰相生成过程;水汽在略高于饱和的条件下时,在云滴(冰晶)上进一步凝结(凝华),使云滴(冰晶)长大的凝结增长过程(凝华增长过程);云内尺度较大的云滴,在下落过程中与较小的云滴碰并而长大的重力碰并过程;冰晶和过冷水滴同时存在时,因为过冷水滴的饱和水汽压比冰面的大,造成过冷水滴逐渐蒸发,而冰晶则由于水汽的凝华而逐渐长大的冰晶过程。降水粒子的尺度大约是云滴的一百倍,但其浓度却仅为云滴的百万分之一。

云滴由于受表面张力作用,通常呈球形。球形纯水滴表面的饱和水汽压,高于平水面的饱和水汽压。以半径为0.01微米的水滴为例,其饱和水汽压超过平水面的12.5%。在没有任何杂质的纯净空气中,初始的云滴只能靠水汽分子随机碰撞而生成。靠分子随机碰撞而产生云滴的可能性随着尺度增大而变小。

微小的初始云滴,只有在相对湿度达百分之几百的环境中才不致蒸发。但实际大气的水汽含量很少能够超过饱和值的1%。因此,在没有杂质的纯净空气中是难以直接形成云滴的。事实上,大气中存在着各种凝结核,这为凝结成云滴提供了条件。

云凝结核可分成两类:亲水性物质的大粒子,它不溶于水,但能吸附水汽,在其表面形成一层水膜,相当于一个较大的纯水滴;含有可溶性盐的气溶胶微粒。它能吸收水汽而成为盐溶液滴,属吸湿性核。例如海盐的饱和水溶液,只要环境相对湿度高于78%,就可以凝结长大。

随着凝结水量的增加,溶液滴的浓度越来越小,所要求的饱和水汽压也越高。但是,随着凝结水量的增加,溶液滴的尺度也随着增大,所要求的饱和水汽压又随尺度增大而降低。因此,不同浓度和不同尺度的溶液滴要求的饱和水汽压值各不相同,当环境水汽压大于相应的临界值时,溶液滴即可继续增长,随着尺度的增大,溶液滴渐趋纯水滴,这时溶液滴的饱和水汽压也转而下降,一个含千亿分之一克食盐的微粒,只要环境的相对湿度略大于100%,即可成为凝结核而生成云滴。

在没有杂质(冰核)的过冷水中,冰相的生成(水由气态或液态转化为固态)是由水分子自发聚集而向冰状结构转化的过程。聚集在一起的水分子簇,由于分子热运动起伏(脉动)的结果,不断形成和消失。分子簇出现的概率随温度的降低而增大。当分子簇的大小超过某临界值时,就能继续增大而形成初始冰晶胚胎。

直径为几微米的纯净水滴,只有在温度低于-40℃时才会自发冻结;但当过冷水中存在杂质(冰核)时,在杂质表面力场的作用下,分子簇更容易形成冰晶胚胎。自然云中冰晶的生成,主要依赖于杂质(冰核)的存在。在-20℃时,每升空气中约有一个冰核,仅为同体积中云凝结核浓度的几十万分之一。因此云中冰晶的浓度,一般远远小于水滴的浓度。

云中空气上升而膨胀冷却时,水汽不断凝结。在凝结过程中,云滴半径的增长速度和云中水汽的过饱和度成正比,与云滴本身的大小成反比。所以在确定的水汽条件下,云滴凝结增长越来越慢。在0.05%的过饱和条件下,一个由质量为十亿分之一克食盐生成的初始云滴,从半径为0.75微米开始,增长到1微米时需要0.15秒的时间,增长到10微米时需30分钟,而增长到30微米时,就需要四小时以上的时间。

虽然水汽在少数大吸湿核上凝结之后,可产生大的云滴,但如果要它继续增长到半径为100微米的毛毛雨,就需要更长的时间,而积云本身的生命大约只有一小时,故在上述情况下不可能形成雨滴;在层状云中,气流上升的速度,只有几厘米每秒,当大云滴在不断下落的过程中,还来不及长成雨滴,就会越出云底而蒸发掉。总之,在实际大气中,单靠水汽凝结是不能产生雨滴的。

云滴相互接近时,发生碰撞并合而形成更大云滴的现象,称为云滴碰并增长。在重力场中下降的云滴,半径大的速度较快,可赶上小云滴而发生碰撞并合,这称为重力碰并。但半径不同的云滴相互接近时,由于小滴会随着被大滴排开的空气流绕过大滴,所以在大滴下落的路途中,只有一部分小滴能和大滴相碰。相碰的云滴,也只有一部分能够合并,其他则反弹开来。

碰并的比例称为碰并系数,其数值由大小云滴的半径所决定,通常都小于1。半径小于20微米的大云滴对小云滴的碰并系数很小。大云滴穿过小云滴组成的云体时,其半径在碰并过程中的增长率与碰并系数、大小云滴之间的相对速度和小滴的含水量都成正比。大云滴的半径越大,碰并增长得就越快。

在实际大气中,云滴间的碰撞是一种随机过程。云中一部分大云滴碰并小云滴的机会比平均结果大,所以长得特别快;而其他云滴的碰并速度,则比平均结果慢。由于雨滴的浓度只有大云滴的千分之一左右,所以只需要考虑那些长得最快的少数大云滴长成雨滴的过程。用这样的概念建立起来的随机碰并增长理论,所得到的雨滴生成时间,比连续增长的时间大大缩短,这与实际情况更加接近。

此外,气流的湍流混合作用和云滴在电场作用下的相互吸引,也能使云滴相互接近而发生碰并。一般认为这两种机制,主要是对小云滴的增长起作用。由液态水构成的云体,若有足够的厚度、足够的上升气流速度和液态含水量,其中的大云滴就可以在碰并过程中长大为雨滴。这种过程称为暖云降水过程。

半径大于3毫米的雨滴,在下降过程中会严重变形,有时会破裂成若干小雨滴;在大小雨滴相互碰并的过程中,有时也会分离出一些较小的雨滴,这些情况,统称为雨滴的破碎过程。这种由小雨滴在云中反复经历了上升、增长、下落和再破碎的过程之后,在一定条件下迅速形成大量的雨滴,称为朗绥尔连锁反应。

在同一零下温度时,冰面的饱和水汽压比水面的小,故相对于水面饱和的环境水汽压而言,冰面的水汽压就是过饱和的,所以在温度低于0℃的过冷云中,一旦出现冰晶,就可以迅速凝华增长。

伯杰龙根据这个道理,于1933年提出了降水粒子的生成机制。他认为:在低于0℃的云中,有大量的过冷水滴存在,冰晶的出现,就破坏了云中相态结构的稳定状态;云中水汽压处于冰面和水面饱和值之间,水汽在冰面上不断凝华的同时,水滴却不断蒸发;冰晶通过水汽的凝华,可迅速长大而成雪晶。这样,水分从大量的过冷水滴中不断转移到少数冰晶上去,终于形成了降水粒子。这即为冰晶过程,又称伯杰龙过程。

过冷水滴一方面蒸发,水汽向冰晶转移,使冰晶长大;一方面又和雪晶碰撞而冻结,使雪晶进一步长大。如果参加碰撞而冻结的过冷水滴很多,雪晶就会转化为球状的霰粒。雪晶还可能在运动中相互粘连成雪团而下降这些固体降水粒子,在落到地面之前未融化者,就是雪霰等固体降水;落到温度高于0℃的暖区时,就会融化成雨滴。

冰晶浓度在很多场合下高于环境的冰核浓度,这说明参与冰晶过程的冰晶,不仅从冰核作用过程中生成,而且当雪晶等固体降水粒子在-5℃左右和直径大于24微米的过冷水滴碰撞冻结时,或者当松脆的枝状冰晶碎裂时都可能产生一些碎冰粒。这种产生次生冰晶的过程,称为冰晶繁生。

在中纬度地区,形成大范围持续降水的层状云,往往比较深厚,云顶常在0℃层以上:因而云体的上部温度较低,有大量冰核活化,这是产生冰晶的源地。冰晶长大之后降到云体中部,那里有大量的过冷水滴,可通过冰晶过程将水分供给冰晶,使冰晶继续生长。故一般称这种云的上部为播种云,中部为供应云。在这种过程中长大的雪晶和雪团,落入下部0℃以上的暖云中,就融化成为雨滴。在雷达荧光屏上,常可观测到显示这种融化过程的亮带。

对于云和降水粒子形成、增长和转化的规律的认识,主要是从理论研究和可控条件下的实验中得到的。实际上,自然云的环境和相应的微物理进程十分复杂,加上观测方面的困难,对它们的认识还很粗浅。因此云和降水微物理学的发展方向,主要是探测和研究以自然云为宏观背景的粒子群体的演变规律。

同类推荐
  • 太空漫步

    太空漫步

    本套书主打科技牌。少年儿童要想成为一个有科学头脑的现代人,就要对科学知识和科学热点有一个广泛的了解,这样才能激发他的兴趣和爱好。
  • 飞碟探索30年

    飞碟探索30年

    将《飞碟探索》自创刊起,30年来的所有有关飞碟的尘封的或最前沿的珍贵资料悉数整理披露,首次集结成书权威曝光!40万字精华、经典记录,近百位专家、发烧友目击、研究纪录,并配有数百幅珍贵飞碟秘照,向读者系统、全面、直观地解读中外飞碟探索之旅。维基解密、霍金理论、地下实验、争议目击、神秘劫持……起源!事件!风声!秘密!真相!国内第一飞碟杂志30年研究精华结晶!为您一一探秘飞碟及外星人的前世今生。这是一本足以让飞碟“发烧友”大呼过瘾的飞碟圣经。
  • 做个绿色小天使

    做个绿色小天使

    地球上的绿色植物是一座巨大的宝库,亿万年来它不仅装点着我们的美丽星球,更为其他生命的出现及进化提供了叹为观止的能源财富,也正是因为绿色资源的存在,地球上的生物才最终进化出生命的最高主宰——人类,而绿色植物又继续为人类的衣食住行提供着最为丰实的物质基础!遗憾的是,上百万年来位于食物链最高端的人类对地球植物的掠夺性开发不仅使绿色能源日渐减少,更使那葱郁的景色逐渐淡出自己的视野,大量物种的消失、水土流失的严重以及沙尘暴的肆虐终使人类开始警醒:绿色,对于整个星球的重要意义所在!
  • 大脑的神奇上

    大脑的神奇上

    本书丛书向读者展示了人类在时空长廊里考证历史的回响、发掘生命的秘密、探寻太空的谜团、破解文明的神秘,所揭示的神奇绚丽的壮阔画卷,将让我们的视野更加开阔,将使我们的心灵感震颤.
  • 精彩绚丽的宇宙时空

    精彩绚丽的宇宙时空

    现代社会的飞速发展很大程度上得益于科技的进步,“科技是第一生产力”已日益成为人们的共识。但是,由于现代科学的分工越来越细,众多的学科令人目不暇接。对于处于学习阶段的广大青少年而言,难免有“乱花渐欲迷人眼”的困扰。有鉴于此,我们组织了数十名在高等院校、教育科研机构的工作、有着丰富的青少年教育的专家学者,编选了这套《新编科技大博览》。
热门推荐
  • 陶真人内丹赋

    陶真人内丹赋

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 斗碎星河

    斗碎星河

    一界大帝,重生之后,为复千年封印之仇,再次踏上修炼一途,然千年时间,宇宙文明却已是沧海桑田,未知的旅途,强大的敌人,这一切都是横担强大道路上的阻碍。可,那又怎样?来吧,骚年,跟着我一起,见证这伟大时刻,让战斗的声浪,震碎这宇宙星河!
  • 名为千斩的我不可能是个战五渣

    名为千斩的我不可能是个战五渣

    被称为「王」的“千斩”,与被称为神的「轮回终界」,战斗已经在所难免......完成了所有,斩断了一切,也就失去了存在的意义。可是,谁说胜利一定是终结?少年与异世界的羁绊,才刚刚开始......与迷之少女的相遇,意味着什么?自称游戏管理员的家伙给予的奖励,倒在血泊中的男人,拥有神志的「风铃木」,。这一切,都是个谜团,等待他去解开的谜团。所有的故事,都在温暖的春光中,开始。
  • 荒诞推演游戏

    荒诞推演游戏

    Q群:850785216阴森森的宅院里,弥漫着不可知的诡异,活跃着擅于隐匿的犯罪者。虞幸握着一把匕首,在大佬们面前宛如待宰的羔羊。阁楼响起悉悉索索的拖拽声,似乎有什么东西正在爬行,临时队友们:“你去探查阁楼。”虞幸:“好吧……”生路被怪物堵住,临时队友们:“你去吸引怪物,快点去,否则现在就让你活不了。”虞幸:“我去我去,别杀我。”推演游戏结束时……【推演结束,案件真相还原度100%,本次mvp推演者——虞幸】【获得称号:幕后黑手、怪物克星、剧情探索者、欺诈专家】知根知底的固定队友:“队长又跑外面去干了什么啊!”
  • 春秋奇幻冒险

    春秋奇幻冒险

    沮丧,自责,悔恨,愤怒,不愉快!对了,他扭蛋扭了九十发没出货!黑黢黢中闪出一道光。“你想要什么。”要什么?很纠结啊,想要的太多。‘乖巧伶俐的妹妹?’‘不要龙傲天剧本,太狗血。’‘哦,姑娘可以多一些,嘛,漂亮一点就最好不过了。’‘希望......’“够了。”椭圆形打光熄灭,重回黑暗,“真是贪婪。”——一个线条简约,温暖人心的故事。
  • 班上女混混要和我处对象

    班上女混混要和我处对象

    他曾经在学校受尽欺负,只因和班上女混混处对象,最后翻身变成国际顶级杀手组织老大
  • 贺少赖着我了怎么办

    贺少赖着我了怎么办

    “贺北叶,你怎么三翻四次的来我家!”“臭丫头,不来你家怎么追你。”遇到无赖不可怕,可怕的是遇到一个既有耐心又有脑子的无赖,那才叫可怕!秦潇就被盯上了,从此以后,她走到哪里,就有大批的玫瑰和工作人员尾随到哪里。“秦小姐,这是贺先生送您的九百九十九朵玫瑰花,请签收。”“秦小姐,这是贺先生送您的巧克力,请笑纳。”“秦小姐……”
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 浮生未歇之锦瑟

    浮生未歇之锦瑟

    繁浅第一次听到洛离这个名字是出自两名仙娥之口。那日,繁浅正靠在一棵桃树上睡觉,就听到树下两名仙娥正在议论什么洛离墨染,不禁好奇,竖起耳朵听了起来:“不日就是蟠桃盛会,想必洛离仙上定会参加!”洛离是谁?怎料惊鸿一瞥便是两世的纠葛……
  • 宠物小精灵之最强赢家

    宠物小精灵之最强赢家

    世界顶端的男人——叶辉,穿越到了宠物小精灵的世界。且看他如果再小精灵的世界混的风生水起,闯个一个叶辉的时代。