登陆注册
47920500000023

第23章 信息技术(4)

我们知道,微波通信采用接力的办法,通过建立中继站实现了远距离的通信。但是,这种方式也有很大的缺点。因为地球上有些地方是无法建立中继站的。比如,从我国的北京到美国的纽约,距离有上万千米,中间隔着波涛汹涌的太平洋,如果每隔四五十千米,建立一个中继站,就得在海上建两百多个站,这是不可能做到的。

利用卫星进行通信的思想,最早是由英国科学家、预言家克拉克提出的。1945年2月,克拉克发表了一篇《地球外的中继站》的科学预言论文。他提出利用人造地球卫星作为传送微波信息的中继站,将卫星放到赤道上空约36000千米的同步轨道上。这样,一颗卫星上的中继站所转发的微波,可以覆盖大约三分之一的地球表面。如果布放三颗等距离同步卫星,全球卫星通信即可实现。

1965年4月6日,第一颗通信卫星发射成功。从此,人类真正在天上建立了“中继站”。

卫星通信是由一个地面站向卫星发射信号,经过卫星的放大、变频等处理,再转发给另一个地面站。一般来说,经卫星的这一“跳”,最远的通信距离可达13000千米,三“跳”即可绕地球一周。通信卫星居高临下,因而不受任何地形条件的限制,即使是在荒漠、高山、海洋和岛屿等,只要有一个直径零点几米的“甚小地面站”,就可以通信,而且通信的费用与通信距离无关。有人作过计算,从一颗卫星发射出来的微波信号,能够覆盖地球面积的40%,相当于在地面架设300多个微波接力站。在卫星覆盖区内,任意两点或多点,都可以实现卫星通信。卫星通信的容量也大得惊人,一颗通信卫星可以容纳6万多人同时打越洋电话,并可进行许多路电视通信,还可以进行数据、文字、图像和移动通信。

电子通信

在当前这样一个信息时代,人们对信息交往速度的要求越来越高,其中尤其使人们不满足的是信件的邮递速度。一封国际邮件,即使是利用特快专递邮政业务,它也要二三天左右。这对于一些急需用信件方式而无法用电话传递的信息来说,譬如合同、各种公证文书等等,常常因太慢而误事。当然使用传真通信是可行的,但就国内国际的目前状况来说,许多普通家庭并不拥有传真机,因此也难于使邮件普遍地使用传真机传送。

终于在20世纪80年代初,国际上出现了一种电子信函业务。简单地说,这是一种邮政加电信结合的业务。其原理也很易理解,需要使用者可去开办这项业务的邮局,把需要邮递传送的文件或信件交给他们,由邮局用传真机发往中继局,再由中继局通过国际电话电路传往目的地邮局,交给收受邮件者,收件人就可以在一二小时内看到同交件人交出的文件或信件一模一样的真迹。因此,电子信函是目前最迅速的通邮方式了。

在国际电脑网络形成的20世纪90年代,这种电子信函有了更进一步的飞跃。分布世界各地的入网电脑的使用者,只要在家里就可以及时把信函内容直接发给收件人,不必再有劳邮政部门了。

中微子束通信

无线电通信是今日使用最广的通信方法。但是它常受到外界的干扰。至于微波通信则有一个很大的缺点,就是受到高山或高大建筑物的阻隔,微波就不能通过。于是不得不每隔一定距离设置一个微波中继站,来传送微波讯号,这就大大增加了费用。

现在已经发明了一种新型的通信方法,它就是利用中微子束进行的通信。中微子是存在于原子核中的一种粒子,它在原子核裂变时放射出来。中微子并不神秘,在阳光中就含有大量的中微子,并不断地放射到地球上来,这是因为太阳内部不断地在进行着核反应。中微子的本领大极了,一是速度快,它以接近光速的速度行进,从太阳来到地球8分钟就够了。二是穿透力强,不管高山深海,还是岩石金属,它都一穿而过,似乎没有东西可以阻拦它前进。三是方向性好,不会反射、折射、散射,能量损耗极小。它穿过地球之后,衰减不到1%。四是中微子具有不受干扰的特点,因为中微子不带电,不会受任何物质,包括核辐射的影响。

量子通信

量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。所谓“隐形传送”指的是脱离实物的一种“完全”的信息传送。从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。但是,量子力学的不确定性原理不允许精确地提取原物的全部信息,这个复制品不可能是完美的。因此长期以来,隐形传送不过是一种幻想而已。

1993年,6位来自不同国家的科学家,提出了利用经典与量子相结合的方法实现量子隐形传态的方案:将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处。其基本思想是:将原物的信息分成经典信息和量子信息两部分,它们分别经由经典通道和量子通道传送给接收者。经典信息是发送者对原物进行某种测量而获得的,量子信息是发送者在测量中未提取的其余信息;接收者在获得这两种信息后,就可以制备出原物量子态的完全复制品。该过程中传送的仅仅是原物的量子态,而不是原物本身。发送者甚至可以对这个量子态一无所知,而接收者是将别的粒子处于原物的量子态上。在这个方案中,纠缠态的非定域性起着至关重要的作用。量子力学是非定域的理论,这一点已被违背贝尔不等式的实验结果所证实。因此,量子力学展现出许多反直观的效应。在量子力学中能够以这样的方式制备两个粒子态,在它们之间的关联不能被经典地解释,这样的态称为“纠缠态”,“量子纠缠”指的是两个或多个量子系统之间的非定域非经典的关联。

量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。1997年,在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输。这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。最近,潘建伟及其合作者在如何提纯高品质的量子纠缠态的研究中又取得了新突破。为了进行远距离的量子态隐形传输,往往需要事先让相距遥远的两地共同拥有最大量子纠缠态。但是,由于存在各种不可避免的环境噪声,量子纠缠态的品质会随着传送距离的增加而变得越来越差。因此,如何提纯高品质的量子纠缠态是目前量子通信研究中的重要课题。近年,国际上许多研究小组都在对这一课题进行研究,并提出了一系列量子纠缠态纯化的理论方案,但是没有一个是能用现有技术实现的。最近发现了利用现有技术在实验上是可行的量子纠缠态纯化的理论方案,原则上解决了目前在远距离量子通信中的根本问题。这项研究成果受到国际科学界的高度评价,被称为“远距离量子通信研究的一个飞跃”。

同类推荐
  • 战机:天空中的较量

    战机:天空中的较量

    本书介绍了军用飞机的相关知识。全书系统地讲述了军用飞机的诞生历史、发展过程、制造工艺、军事作用等知识,并按类型介绍了世界各国共百余种具有代表性的机型。通俗易懂的文字,配以精美准确的图片,能让读者迅速了解军用飞机这一科技含量极高的国防武器,并对世界各国的空军力量有进一步的认识。
  • 开发地球最后的处女地(科普知识大博览)

    开发地球最后的处女地(科普知识大博览)

    要想成为一个有科学头脑的现代人,就要对你在这个世界上所见到的事物都问个“为什么”!科学的发展往往就始于那么一点点小小的好奇心。本丛书带你进行一次穿越时空的旅行,通过这次旅行,你将了解这些伟大的发明、发现的诞生过程,以及这些辉煌成果背后科学家刻苦钻研的惊心时刻。
  • 动手做实验丛书--物理实验中的思维能力培养

    动手做实验丛书--物理实验中的思维能力培养

    该系列丛书主要介绍动手做实验,本书详细讲解了物理实验中的思维能力培养。
  • 科学奥秘丛书-生命奥秘

    科学奥秘丛书-生命奥秘

    地球是人类的家园,是人类赖以生存和发展的基地。本书简要的介绍了关于地球的各种知识,使读者在轻松的阅读中,受益非浅。
  • 电力知识

    电力知识

    什么叫电路?电路就是电流流通的路径。它是由电源、负载(用电设备)、连接导线以及控制电器等组成。电源:是产生电能的设备,它的作用是将其他形式的能量(如化学能、热能、机械能、原子能等)转变成电能,并向用电设备供给能量。负载:是各种用电设备。它的作用是将电能转变为其他形式的能量。连接导线:它把电源和负载联成一个闭合通路,起着传输和分配电能的作用。控制电器:其作用是执行控制任务和保护电器设备。
热门推荐
  • 婚姻终结者

    婚姻终结者

    她是一个名门的美女,可是,一场不幸,却让她从那高端一下子就跌落至低谷,命运的捉弄,却让本来就十分讨厌吕吉祥的女子不得不下嫁给他为妻……于是,一场爱情与非爱情的游戏便从此就开幕了。
  • 校草太霸道:小姐别走

    校草太霸道:小姐别走

    【霸道宠文,宠到没节操】初次见面,她们被当成花痴,某三男直接无视而过。肿么可以这样,她们好歹也是倾国又倾城的大美女啊。此后,某三男领悟过来,开启猛追狂打,死不要脸,她们从此逃也逃不掉,躲也躲不掉。终于有一天,你喜欢我那点,我改还不行吗/我喜欢你不喜欢我,有本事你喜欢我啊。。。。
  • 大佬少女狂打脸

    大佬少女狂打脸

    【宠文、无虐、女强】幼年险些丧命,神秘人将奄奄一息的她带走,十年后,华丽回归……他看着她的一双桃花眼愣了愣神……A市众人大跌眼镜,看着两人花式撒狗粮!!!
  • 英雄墓铭

    英雄墓铭

    贪婪引发罪恶,名为“英雄”的传说从绝望中脱颖而出。每一个罪恶的年代承担着一份痛苦,传说逐渐淡出人们脑海。现在故事的主人公——“英雄”他在哪里?祈祷着,悲鸣着,哀悼着,痛苦着,等待着来自英雄的救赎。这是一个写作英雄,读作魔王的故事。辉煌的英雄步向终结,曾经击碎九次元的人物走向终结。拳碎九次元,挥手时空崩,此举此生此世,不枉英雄重回。现在第七代英雄——永夜王归来!
  • 不乖DE天使

    不乖DE天使

    高中正值青春年华的季节,恋爱的大好时光,但是咱们的捣蛋鬼林馨宸却因为娃娃亲被迫选择与慕泽枫在一起,一个是霸道校草,一个是调皮捣蛋鬼,当两个人相遇的时候又能擦出什么样的火花呢?最终是到底是谁臣服于谁能?两个人真的能突破种种的难关吗?那就让我们一起剥开层层的迷雾吧!
  • 宗宝道独禅师语录

    宗宝道独禅师语录

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 病娇毒宠

    病娇毒宠

    身娇体软软糯女主vs偏执病态阴狠男主 恬甜人如其名,说话声音像吃了蜜一样甜,加上小巧的身体,年仅四岁就成了幼稚园里最靓的崽,再加上还有妹控哥哥,女儿控的爸爸妈妈。简直是无忧无虑,天宠地宠的一生。但是重生回来,小小年纪就一直愁秃了头发。这……这回来见得这个男孩就是影响她全家幸福的家伙啊!!看着眼前这个第一次来到她家的年纪小小一脸阴沉的少年。偏偏妈妈还一直热情的招待他,让他坐,给他倒茶,拉着他的手亲切的说着话。恬甜心里想:您老可闭嘴吧。她冒着汗,哭着大喊道:“哥…哥哥,你好…帅…我……我想抱……抱你。啊…啊……。”妈妈看着流着眼泪,哈喇着鼻涕的小恬甜,笑呵呵道“囡囡太喜欢你了,小朋友,你要多笑笑嘛。”反派…我怎么没看出来。恬甜……我也没有那个意思!
  • 腹黑少爷的倔强丫头

    腹黑少爷的倔强丫头

    一个平凡的女孩,却被世家所影响,不得不与一家拥有巨大企业的董事长的儿子同居,可令她扶额的是,这位大少爷的脾气不好,性格又冷,毒舌,实在是不适合同居的对象啊。——————————————————————————————————“喻浩凡,你给我走开了啦!”某女气哄哄地说。“我为什么要走开呢?”某男牵起了她的手。“今生今世,我们都要在一起。”某男突然抱住了她,深情相拥。
  • 故人自西边来

    故人自西边来

    她自小时起便是头脑不清晰,一起灭门之祸,孤孤单单的孤女,她是落入尘埃,还是凤凰涅槃,冲上云霄。回首,故人自西边来,往何处去?