登陆注册
10494100000013

第13章 物理大发明(12)

盖勒德早先是矿业工程师,他最初也是试图通过施加高压强来使气体液化。他用的工作物质是乙炔,乙炔在常温下,大约加到60个标准大气压就足以液化。可是盖勒德的仪器不够坚固,不到60个标准大气压就突然破裂了,被压缩的气体迅速跑出去,就在容器破裂的瞬间,他注意到器壁上形成了一层薄雾,很快就又消失了。他立即醒悟到,这是因为在压强消失之际,乙炔突然冷却,所看到的雾是某种气体的短暂凝结,不过当时盖勒德却把它误认为是乙炔不纯,含有水汽所凝结成的水雾。于是,他从化学家贝索勒特的实验室里要了一些纯乙炔,再进行试验。实验的结果还是出现了雾,这样,他才断定这雾原来就是乙炔的液滴。盖勒德的乙炔实验虽然走了一点小弯路,但却找到了一种使气体液化的特殊方法。

接着,他尝试使空气液化,以氧作为他的第一个目标。他之所以首选氧,是因为纯氧比较容易制备。他将氧气压缩到300个标准大气压,再把盛有压缩氧气的玻璃管放到二氧化硫的蒸气中,这时温度大约为-29℃,然后再让压强突然降低,果然在管壁上又有薄雾出现,他重复做了这个实验很多次,结果都是一样,最后盖勒德肯定,这薄雾就是液态氧。

有趣的是,正当盖勒德在法国科学院报告这一成果时,会议秘书宣布了不久前接到的毕克特的电报,电报说他在320个标准大气压和-140℃下联合使用硫酸和碳酸,液化氧取得了成功。

虽然盖勒德的实验只是目睹了氧的雾滴,并没有把液态氧收集到一起保存下来,然而他的方法却在后来其他气体的液化中得到了应用。

1895年以后,低温物理学在工业上的应用与日俱增,主要用途是为炼钢工业提供纯氧。正在这个时候,英国皇家学院的杜瓦为研究绝对零度附近的物质的性质,也在致力于解决低温的技术问题。1885年,他改进了前人的实验方法,获得了大量的液态空气和液氧,并在1891年发现了液态氧和液态臭氧都有磁性。1898年,杜瓦发明了一种特殊的绝热器,当时叫做低温恒热器,后来也称为杜瓦瓶。他将两个玻璃容器套在一起,联成一体,容器之间抽成真空,这样的瓶就可以盛大量液氧了。1893年1月20日杜瓦宣布了他的这项发明。1898年,杜瓦用自己的新型量热器实现了氢的液化,达到了20.4K的低温,第二年实现了氢的固化,靠抽出固体氢表面的蒸气达到了12K的低温。

杜瓦以为液化氢的成功开启了通过绝对零度的最后一道关卡,谁知道他的残余气体中竟还有氦存在。他和助手们想了很多办法,经过数年的努力,但终未能实现氦的液化。

正当世界上几个低温研究中心致力于低温物理研究时,从事低温领域研究的最出色的是荷兰物理学家卡默林·翁尼斯。他以大规模的工程来建筑他的低温实验室——莱登实验室。他的实验室的特点是:把科学研究和工程技术密切结合起来,把实验室的研究人员和技师组织起来,围绕一个专题,分工负责,集中攻关。相比之下,他的低温设备规模之大,使同时代以及早于他的著名实验室的设备简直变成了“小玩具”。这样,翁尼斯领导的低温实验室——莱登实验室成了国际上研究低温的基地。

1908年的一天,历史性的日子终于到来了,这一天的实验室工作是从早晨五点半开始一直工作到夜间九点半。全体实验室工作人员都坚守在各自的工作岗位上,他们正在进行氦的液化实验,他们是多么渴望看到人类从没有看到过的液化氦啊!可是,氦气能够液化吗?大家都在担心着。墙上的挂钟“滴嗒滴嗒”地响个不停,时间在一秒一秒地消逝。人们屏住了呼吸,全神贯注地注视着液化器。他们先把氦预冷到液氢的温度,然后让它绝热膨胀降温,当温度低于氦的转变温度后,再让它节流膨胀,然后再降温,这一系列的过程在液化器中反复多次地进行着。终于在下午六点半,人类第一次看到了它——氦气被液化了!初看时还有点令人不敢相信是真的,液氦开始流进容器时不太容易观察到,直到液氦已经装满了容器,事情就完全肯定了。当时测定在一个大气压下,氦的沸点是4.25K。莱登实验室的所有人都异常兴奋,奔走相告,互相祝贺,欢笑的声浪传向全世界。

莱登实验室的全体工作人员并没有满足于已取得的成绩,在翁尼斯的指挥下,他们快马加鞭,乘胜前进,继续夜以继日地工作着。他们了解,如果降低液氦上的蒸气压,那么随着蒸气压的下降,液氦的沸点也会相应降低。他们这样做了,并且在当时获得了4.25K~1.15K的低温。

当然,在无边无际的宇宙里,按我们的标准来看许多物质是处于极低温状态的,但是在地球上,人类以自己的智慧和劳动踏入了从未进入的奇异低温世界。自1908年以来,人类经过了93年的研究,在这个奇异世界里,人们发现了许多奇异的现象,其令人神往之处不亚于南北极的冰天雪地,胜过宇宙中的低温,因为在这里人们可以控制实验室条件,细心地观察新的事物。在现代,液氦制冷的低温技术仍是低温领域中的重要手段,大量的实验工作离不开氦液化器……人们有理由为此感到自豪,同时也期待着,在这个低温世界里会看到怎样更新天地啊!

揭开超导研究的序幕

事物都是一分为二的,导体的一方面有善于导电的性质,另一方面又对电流有阻碍作用。这是因为自由电子在定向运动中,还不时地和处于晶格点阵上的正离子相互作用而产生碰撞,从而阻碍自由电子的运动。这种对运动电荷的阻碍作用称为电阻。在一般情况下,所有导电的物体,即使导电性能最好的银,也有电阻,电流通过时,仍然会发热,选成损耗。这是在常温下物体的性质,那么在温度为4.2K,乃至更低的温度下,物体的性质有什么变化呢?

1911年,翁尼斯和他的助手们在实验中发现了一个特殊的现象:当金属导体的温度降到10K以下时,其电阻会明显下降,特别是当温度低于该金属的特性转变点以下时,电阻会突然下降到10-9欧姆以下。这种现象是以前没有发现的,大家对此都非常感兴趣,于是他们取水银作为研究对象。一天,当他们正在观察低温下水银电阻的变化的时候,在4.2K附近突然发现:水银的电阻消失了!这是真的吗?他们简单不敢相信自己的眼睛了。他们在水银线上通上几毫安的电流,并测量它两端的电压,以验证水银线上的电阻是否真的为零。结果他们发现,当温度稍低于-269℃(4.2K)时,水银的电阻确实突然消失了。毫无疑问,水银在4.2K附近,进入了一个新的物态。在这一状态下,其电阻实际变为零。

翁尼斯和他的助手们反复研究了这一现象,他们把这种在某一温度下,电阻突然消失的现象叫超导电现象,把具有超导电现象性质的物质叫做超导体,把物质所处的这种以零电阻为特征的状态,叫做超导态。尽管翁尼斯等人已经明确给出了超导体的一些明确定义,但是要识别零电阻现象并不是很容易做到的。在当时的实验条件下,用仪表直接测量来证明水银的电阻为零,实际上是很难做到的。于是翁尼斯又设计了一个更精密的实验:他将以前的装置进行了简化和改进,把一个铅制的圆圈放入杜瓦瓶中,瓶外放一磁铁,然后把液氦倒入杜瓦瓶中使铅冷却变成超导体,这时如果将瓶外的磁铁突然撤除,铅圈内便产生感应电流。如果这个圆铅环的电阻确实为零,这个电流就应当没有任何损失地长期流下去,这就是著名的持续电流实验。实际上,在1954年,人们在一次实验中开始观察,这个电流从1954年3月26日开始,一直持续到1956年9月5日,在长达二年半的时间里,持续电流未见减弱的迹象。最后,由于液氦供应中断才使实验中止。这就是说,圆环里面的电子,好像坐上了没有任何摩擦的转椅,一旦转动起来,就一直转下去,几年停不下来,永远也停不下来了。

直到目前为止,还没有任何证据表明超导体在超导态时具有直流电阻。最近,根据超导重力仪的观测表明,超导体即使有电阻,电阻率也小于10-25欧姆·米,和良导体铜相比,它们的电阻至少相差1016倍,这个差别就好像用一粒直径比针尖还要小的细砂去和地球与太阳之间的距离相比,这真是天壤之别了。可以认为,超导体的直流电阻就是零,或者说,它就是一个具有完全导电性的理想导体。

低温技术的发展,使人们获得了比液氦温度更低得多的温度。对大量金属材料在低温下检验的结果表明,超导电性的存在是相当普遍的。目前已发现二十多种金属元素和上千种的合金化合物具有超导电性。从元素周期表中,我们可以看到:金、银、铜、钾、钠等金属良导体是不超导的;铁、钴、镍等强铁磁性或强反铁磁性物质也是不超导的,而那些导电性能差的金属,如钛、锆、铌、铅等都是超导体。

为什么金属良导体反而不是超导体?为什么超导体对直流电是完全导电的理想导体,对交流电却有电阻呢?人们在更进一步探索新事物本质的过程中,这些问题逐一得到了解答。

1911年翁尼斯在发现超导电性的同时,还发现,超导电性能够被足够强的磁场所破坏,但是人们的注意力当时集中在零电阻现象上,一直认为零电阻是超导体的惟一特性。一直到20世纪30年代,荷兰人迈斯纳和奥森菲尔德按照翁尼斯的发现,对围绕球形导体(单晶锡)的磁场分布进行了细心的实验测量。他们惊奇地发现:对于超导体来说,不论是先对其降温后再加磁场,还是先加磁场后再降温,只要是对它施加磁场,而且锡球渡过了超导态,在锡球周围的磁场都突然发生了变化,当锡球从非超导态转入超导态时,磁力线似乎一下子被排斥到超导体之外,这就是说,超导体内部的磁感应强度总是零。这个现象叫超导体的完全抗磁效应,由于是迈斯纳等人具体操作发现的,所以也叫迈斯纳效应。为了观察和了解超导体的完全抗磁性,迈斯纳等人又设计了一个简单易观察的实验,让我们来了解这个效应。

在一个长圆柱形超导体样品表面绕一个探测线圈,沿着样品的轴线方向加一个磁场。这时,长圆柱形样品的磁通量增加,线圈中就出现瞬时电流,这时电流计指针就向正方向转过一个角度。然后慢慢冷却样品,当温度经过转变温度点时,电流计指针突然出现一个反方向转角,偏角的大小与正向偏角相等。然后无论是撤出或是增加外磁场,电流计的指针再也没有丝毫偏转。为什么会出现这样的实验现象呢?原来,当圆柱形样品被降温经过临界温度时,探测线圈内出现了一个和当初加上外磁场时大小相等、方向相反的瞬时电流。根据电磁感应定律,我们可以知道,产生这个电流的原因,是因为磁通量的减少。

同类推荐
  • 科学奥秘丛书-地球人的未来

    科学奥秘丛书-地球人的未来

    地球正面临着人口激增、资源匮乏的状况,在这种情况下,我们的未来将是什么样子呢?本书从衣、食、住、行、能源、医疗等方面展现了未来生活的美好画卷。
  • 开拓学生视野的传奇故事:会跳舞的花

    开拓学生视野的传奇故事:会跳舞的花

    《开阔学生视野的传奇故事:会跳舞的花》中的一个个传奇故事,融中外奇闻于一体,汇古今奇趣于一书,内容翔实,洋洋大观。《开阔学生视野的传奇故事:会跳舞的花》中的一个个传奇故事,虽奇而不荒诞,虽趣而不俗,虽神而不虚假。读罢这些故事,你会觉得既离奇神秘,又真实可信,一册在手,神游世界,探古寻幽,自有乐趣。你还能从这些精彩的故事中学到知识,增长见识,明白事理,陶冶性情。
  • 实用生活禁忌(实用生活文库)

    实用生活禁忌(实用生活文库)

    水果中含有丰富的维生素C、维生素A以及人体所必需的各种矿物质(最主要的是钾),不但水分含量高,还有大量的纤维素,可以促进健康、增强孩子的免疫力,达到预防疾病的效果。不过要注意的是,有些水果的含糖量很高,如果多吃会引起肥胖。
  • 破译奥秘大世界丛书:破译神奇人体之谜

    破译奥秘大世界丛书:破译神奇人体之谜

    《破译奥秘大世界丛书:破译神奇人体之谜》讲述的是揭秘人类身体上的神秘之处。
  • 战机大观

    战机大观

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,社会的进步、科技的发展、人们生活水平的不断提高,为我们青少年的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,传播科学精神,提高青少年的科学素质,是我们全社会的重要课题。科学教育,是提高青少年素质的重要因素,是现代教育的核心,这不仅能使青少年获得生活和未来所需的知识与技能,更重要的是能使青少年获得科学思想、科学精神、科学态度及科学方法的熏陶和培养。
热门推荐
  • 大学生必知的重要历史人物

    大学生必知的重要历史人物

    本书讲述了上起公元前9世纪的行吟诗人荷马,下迄20世纪中华人民共和国的缔造者、伟领袖毛泽东。从中我们可以领略到开国元勋的王者风范,思想家的深邃睿智,政治家的宦海浮沉,文学家的沧桑人生,艺术家的独具匠心,科学家的智慧灵感及施行探险家的神奇经历……
  • 把星星送给你

    把星星送给你

    【新文《全能少女是大佬》已发,喜欢请收藏鸭】【精分女天文学家*大影帝+无逻辑+小甜文】易莜星第一次和宫辰发生联系,是她命名了宫辰星,粉丝们纷纷判定易莜星是辰光,慨叹粉圈破壁了,黑粉则称易莜星眼光不会这么差,不会这么肤浅。后来某一天大影帝宫辰恋情被爆,女当事人是易莜星,黑粉感叹女教授也难过美人关?宫辰霸气护妻,“是我追的她。她送我一颗星星,我把自己送给她。”
  • 侯门有卿卿

    侯门有卿卿

    萧逸和谢黎第一次正式相逢时,谢黎一身狼狈,手中有一把匕首,脚边是一只断手……只不过,那断手是被谢大小姐斩断的……男人还在脚边哀嚎。那时候他想:长得可真难看,行为也真粗鲁,远远比不上卿卿姑娘。而后来,萧逸却总是记得谢黎当时的模样……惊鸿一瞥,也不为过吧~
  • 市井少年修仙记

    市井少年修仙记

    一块神秘玉佩,逆转一位市井少年命运,带他踏上登天之路。什么是规则?我就是规则。从此宇宙诸天,留下一段万古传奇。
  • 我在YM打上单的日子

    我在YM打上单的日子

    小破站up主重生成为YM战队的上单。五年之后,YM战队再聚首。PDD怒吼,当年是谁演了我PDD?小明:我有LPL春季赛冠军,夏季赛冠军,MSI冠军,亚运会冠军宁:我有LPL春季赛冠军,S赛冠军加FMVP天:我有LPL夏季赛冠军,S赛冠军加FMVPKnight:我五个赛季拿过国服和韩服第一张帅:我全都有!沉默...PDD:“小马,给劳资死!” 群:1094935999
  • 爱狼说

    爱狼说

    他偏激、狂傲、霸道、多情、不可一世,是恶狼是魔鬼是枭雄……他,自诩是网络判官,专门惩罚那些背着老公勾三搭四的女人。他又有“黑道谭哥”之称,手段狠辣!她是他的妻子,蛮横泼辣欺软怕硬;她是他的情妇,风情万种,游走在多个情夫之间游刃有余;她是他网络知己,似有还无小暧昧。三个女人,一场拉锯的爱情心理战。他的滥情是她造就的!“你爱或者不爱我,我就在这里,不离不弃。”“你若不离不弃,我必生死相依!”“亲爱的,你真逗,躺在别人床上说爱我!”谁把谁真的当真?谁为谁心疼?智慧解读夫妻相处小技巧。
  • 好爱你的温柔

    好爱你的温柔

    【甜宠清新文,高甜无虐】她是他收养的一个孤儿,有一天他娶了她。她怕黑时,他抱着她入睡。她不爱吃饭,他一口口地喂。她哭了,他比谁都要心痛。白天在学校一步步跟着她,晚上在家一口口咬她。含在嘴里怕化了,离开一点点就想她想她。世上有一种心痛是得不到喜欢的人,世上有一种唯美叫真正的爱情。
  • 鸳鸯泪

    鸳鸯泪

    一条路,平坦,坎坷,一样要走。一个人,幸福,孤独,仍要生活。她,静静地站在窗前,静静地望着远方。茫然的目光毫无焦距。三月的天霞峰,满枝烂漫,如云似霞,落樱如絮。这是一个樱花盛开的季节。轻风吹拂,飞絮成舞,这是一片美如仙境的世外桃源。她用了十数年的时间,改变了这荒凉的天霞峰,却改变不了她这颗荒凉的心。她以为她是可以的,但是事实却告诉她这不过是她在自欺欺人而已。是啊,这些年来,她何曾忘却过呢!枝上流莺和泪闻,新啼痕间旧啼痕。一春鱼雁无信息,千里关山劳梦魂。无一语,对芳尊,安排肠断到黄昏。甫能炙得灯儿了,雨打梨花深闭门。这不就是她吗?这不就是她想要的吗?该怪谁?该怨谁?这一切难道不是她自找的吗?曾经她告诉自己不可以后悔。而今她告诫自己不能后悔。
  • 太真实的游戏

    太真实的游戏

    希望有一部属于自己的小说,我知道自己的写作技术,纯粹是玩的心态,希望喷子能够少一点。
  • 蜜婚晚承:大人物的小萌妻

    蜜婚晚承:大人物的小萌妻

    她只想做个安安静静的女屌丝,再顺便玩个屌丝养成男神的游戏,可眼前的真男神谁能告诉她这是怎么回事,还被莫名签立了高额债款。“仓小兔,你欠我五千万,按你一个月四千的某女仰天。“总裁大人,您说的是冥币吗?”习祤怒而抓起不把自己放在眼底的女子,摁在墙上狠狠的蹂躏。某粑粑“小宝,老师打电话说你今天没去上课。”某宝宝:“因为房间太乱了。”某粑粑:“所以宁愿不上学也要整理房间?”某宝宝:“不是,因为麻麻说在床上翻了翻,没有找到我,以为我自己上学了,就走了。”(爆笑,主虐附宠)