登陆注册
10494100000010

第10章 物理大发明(9)

1957年,汤斯开始思索设计一种能产生红外或可见光——而不是微波——脉泽的可能性。他和他的姻弟肖洛(A.L.Schawlow)在1958年发表了有关这方面的论文,论文的题目叫《红外区和光学脉泽》,主要是论证将微波激射技术扩展到红外区和可见光区的可能性。

肖洛1921年生于美国纽约,在加拿大多伦多大学毕业后又获硕士和博士学位。第二次世界大战后,肖洛在拉比的建议下,到汤斯手下当博士后,研究微波波谱学在有机化学中的应用。他们两人1955年合写过一本《微波波谱学》,是这个领域里的权威著作。当时,肖洛是贝尔实验室的研究员,汤斯正在那里当顾问。

1957年,正当肖洛开始思考怎样做成红外脉泽器时,汤斯来到贝尔实验室。有一天,两人共进午餐,汤斯谈到他对红外和可见光脉泽器很感兴趣,有没有可能越过远红外,直接进入近红外区或可见光区。近红外区比较容易实现,因为当时已经掌握了许多材料的特性。肖洛说,他也正在研究这个问题,并且建议用法布里-珀罗标准具作为谐振腔。两人谈得十分投机,相约共同攻关。汤斯把自己关于光脉泽器的笔记交给肖洛,里面记有一些思考和初步计算。肖洛和汤斯的论文于1958年12月在《物理评论》上发表后,引起强烈反响。这是激光发展史上具有重要意义的历史文献。汤斯因此于1964年获诺贝尔物理学奖,肖洛也于1981年获诺贝尔物理学奖。

在肖洛和汤斯的理论指引下,许多实验室开始研究如何实现光学脉泽,纷纷致力于寻找合适的材料和方法。他们的思想启示梅曼(T.Maiman)做出了第一台激光器。

梅曼用一根红宝石棒产生间断的红光脉冲。这种光是相干的,在传播时不会漫散开,几乎始终保持成一窄束光。即使将这样的光束射到32万千米之外的月球上,光点也只扩展到两三千米的范围。它的能量耗损很小,这样,人们就自然想到向月球表面发射光脉泽束,以绘制月面地形图,这种方法远比以往的望远镜有效得多。

大量的能量聚集在很窄的光束中,使它还能用于医学(例如在某些眼科手术中)和化学分析,它能使物体的一小点汽化,从而进行光谱研究。

这种光比以往产生的任何光具有更强的单色性。光束中的所有光都具有相同的波长,这就意味着这种光束经调制后可用来传送信息,和普通无线电通信中被调制的无线电载波几乎完全一样。由于光的频率很高,在给定的频带上,它的信息容量远大于频率较低的无线电波,这就是用光作载波的优点。

可见光脉泽就是现在大家熟悉的激光,激光的英文名字也可音译为镭射(laser),laser是“Light Amplification by Stimulated Emission of Radiation”(受激辐射光放大)的缩写。

梅曼是美国休斯研究实验室量子电子部年轻的负责人。他于1955年在斯坦福大学获博士学位,研究的正是微波波谱学,在休斯实验室做脉泽的研究工作,并发展了红宝石脉泽,不过需要液氮冷却,后来改用干冰冷却。梅曼能在红宝石激光首先作出突破,并非偶然,因为他已有用红宝石进行脉泽的经验多年,他预感到用红宝石做激光器的可能性,这种材料具有相当多的优点,例如能级结构比较简单,机械强度比较高,体积小巧,无需低温冷却,等等。但是,当时他从文献上知道,红宝石的量子效率很低,如果真是这样,那就没有用场了。梅曼寻找其他材料,但都不理想,于是他想根据红宝石的特性,寻找类似的材料来代替它。为此他测量了红宝石的荧光效率。没有想到,荧光效率竟是75%,接近于1。梅曼喜出望外,决定用红宝石做激光元件。

通过计算,他认识到最重要的是要有高色温(大约5000K)的激烈光源。起初他设想用水银灯把红宝石棒放在椭圆形柱体中,这样也许有可能起动。但再一想,觉得无须连续运行,脉冲即可,于是他决定利用氙(Xe)灯。梅曼查询商品目录,根据商品的技术指标选定通用电气公司出产的闪光灯,它是用于航空摄影的,有足够的亮度,但这种灯具有螺旋状结构,不适于椭圆柱聚光腔。他又想了一个妙法,把红宝石棒插在螺旋灯管之中,红宝石棒直径大约为1厘米、长为2厘米,正好塞在灯管里。红宝石两端蒸镀银膜,银膜中部留一小孔,让光逸出。孔径的大小,通过实验决定。

就这样,梅曼经过9个月的奋斗,花了5万美元,做出了第一台激光器。可是当梅曼将论文投到《物理评论快报》时,竟遭拒绝。该刊主编误认为这仍是脉泽,而脉泽发展到这样的地步,已没有什么必要用快报的形式发表了。梅曼只好在《纽约时报》上宣布这一消息,并寄到英国的《自然》杂志去发表。

梅曼发明红宝石激光器的消息立即传遍全球。接着又诞生了氦氖激光器。

氦氖激光器是这三四十年中广泛使用的一种激光器。它是紧接着固体激光出现的一种以气体为工作介质的激光。它的诞生首先应归功于多年对气体能级进行测试分析的实验和从事这方面研究的理论工作者。到60年代,所有这些稀有气体都已经被光谱学家做了详细研究。

不过,氦氖激光器要应用到激光领域,还需要这个领域的专家进行有目的的探索。又是汤斯的学派开创了这一事业。他的另一名研究生,来自伊朗的贾万(Javan)有自己的想法。贾万的基本思路就是利用气体放电来实现粒子数反转。

贾万首选氦、氖气体作为工作介质是一极为成功的选择。最初得到的激光光束是红外谱线1.15微米。氖有许多谱线,后来通用的是6328埃,为什么贾万不选6328埃,反而选1.15微米呢?这也是贾万高明的一着。他根据计算,了解到6328埃的增益比较低,所以宁可选更有把握的1.15微米。如果一上来就取红线6328埃,肯定会落空的。

贾万和他的合作者在直径为1.5厘米、长为80厘米的石英管两端贴有13层的蒸发介质膜的平面镜片,放在放电管中,用无线电频率进行激发。为了调整两块平面镜的取向,竟花费了6~8个月的时间。1960年12月12日终于获得了红外辐射。

1962年,贾万的同事怀特和里奇获得了6328埃的激光光束。这时激光的调整已积累了丰富经验。里格罗德等人改进了氦氖激光器。他们把反射镜从放电管内部移到外部,避免了复杂的工艺。窗口做成按布鲁斯特角固定,再把反射镜做成半径相等的共焦凹面镜。

氦氖激光器一直到现在还在应用,在种类繁多的各种激光器中,氦氖激光器也许是最普及、应用最广泛的一种。在红宝石激光器和氦氖激光器之后,接踵而至的是效率更高、功率更大的激光器——二氧化氮激光器和经久耐用、灵巧方便的半导体激光器,它们像雨后春笋一般涌现了出来,成了现代高科技的重要组成部分。

光导纤维的发明

光通信是一门既古老又年轻的科学技术。说它古老,是因为早在古代就有利用光传递信息的记录。我国的周朝,就曾经用“烽燧”来传递敌人入侵的信息,距今已三千余年。航行中利用旗语和灯光传递信息,也有几百年了。1880年发明电话的贝尔就曾经进行过光通信的实验。

可见,用光传递信息远比用电传递信息的历史来得悠久,当然所有这些都只是在空气中传递光的信息。说它年轻,是因为光通信真正成为现实,还是近三十多年的事情,只是在激光器出现之后,电缆通信和无线电通信已显示出许多不足,采用光学方法代替电学方法传递信息才成为当务之急。于是,以光导纤维(简称光纤)为核心的光纤通信技术就应运而生。

作为一门高新科技,光纤通信可以说是物理学、化学、电子学、材料科学等学科的综合产物,在当代高新科技中具有特殊的地位。我国国家科学发展规划,把光纤通信和计算机、生物工程等项目并列为技术革命的重点,就可见其重要性。

光纤通信是现代信息传输的重要方法之一。它的特点是:容量大,保密特性好,抗干扰性能强,中继距离大,节省铜材等。

光纤一般是由同心圆柱形的双层透明介质,主要是石英玻璃之类的介质组成,石英玻璃实际上就是二氧化硅(SiO2)。介质的内层叫纤芯,外层叫包层,纤芯的折射率高于包层,光纤拉成细丝,其直径约为数微米,包层直径为125微米。多根光纤组成光缆,结构与电缆差不多,其制造方法和环境要求也与电缆类似。

值得特别向读者介绍的是,英籍华裔科学家高锟(Charles Kao)的开创性工作对这项重大课题的解决具有决定性的意义。

1966年,高锟和他的合作者霍克汉(G.A.Hockham)在进行一系列理论和实验研究之后,发表了一篇著名论文,提出用光纤进行长距离通信的建议。他们预言光波导材料的衰减率有可能从当时的每千米1000分贝(即1000dB/km)降低到每千米20分贝(即20dB/km),他们证明单模光纤每秒有可能传送10亿位数字信号,并论证了单模光纤的要求和特性。这两位科学家以敏锐的洞察力,勾画出了尚未出现的技术蓝图。他们认为最艰难的任务是研制损耗低于20dB/km的光纤材料。这一指标在1966年实在难以实现,但是在高锟的激励下,仅仅过了4年,就有人宣布达到了这个指标。从此,光纤通信技术蓬勃发展,而高锟和霍克汉的这篇著名论文就成了光纤通信领域的里程碑。

高锟1933年生于上海,1957年获伦敦大学物理学士学位,1965年获博士学位,1957~1960年任英国标准电话和电缆公司工程师,1960~1970年转到英国标准电信实验室(STL)任职。就在这里,他和霍克汉在微波技术专家卡博瓦克(T.Karbowiak)的领导下,对微波波导开展研究,并在卡博瓦克引导下,转向光波波导的研究。

应该说明,纤维光学并非他们首创。大家知道,光从光密媒质(折射率大)射向光疏媒质(折射率小)时,如果入射角大于临界角,就会发生全反射。光导纤维就是根据这个原理。早在1910年,著名物理学家德拜(P.Debye)和他的合作者洪德罗斯(Hondros)就对介质波导做了详尽的理论分析。到了50年代,用玻璃做成可弯曲的光束管道,可以使医生能够看到人体内部,这就是所谓的内窥镜,直到现在还有广泛应用。然而,内窥镜采用的光纤是玻璃制品,其衰减率大于1000dB/km,只适用于长度不超过1~2米的仪器传光传像,根本不能用于长距离通信。即使在1960年发明了激光器之后,用激光器作光源,由于光纤的衰减率如此之大,也无法利用光纤进行长距离通信。

激光器的发明使人们对历史悠久的光学刮目相看。完全有理由相信,以激光为主体的光通信时代即将到来,这一认识促使人们加强对光通信的研究。当时微波已经是远距离通信,包括电视和电话的重要媒介。而微波既可经空气传送,也可经波导传输。人们很自然地想到激光也应该能够像微波那样,经空气直接传送或经空腔光学波导传输。人们普遍认为,只要把微波技术扩展到光传输,就可实现远距离光通信。例如,美国贝尔电话公司的贝尔实验室就在致力于这方面的研究,当时高容量电话系统是靠微波在一系列塔架之间从空气中传送,就像多年来一直在用的微波电视传送一样,贝尔实验室的科学家用激光器做了一个模拟器,建在新泽西州的赫尔姆戴尔(Helmdel)的主实验室和附近的克罗福德山实验室的屋顶之间,经过多次试验,没有取得预期效果。他们很快发现,空气并不像看起来那样纯净,雨、雪或浓雾都能使信号强度大大衰减,例如:经过2.6km的路程信号竟衰减了60dB以上。显然,从空中直接传送光信号很难满足高容量通信的需要。

贝尔实验室同时还在进行另一套试验方案。从1950年开始,微波工程师米勒(S.E.Miller)就带领一个小组在克罗福德山研制一种空腔波导,专门用于60GHz的微波(频率为60GHz的微波,其波长约为5毫米,所以也叫毫米波),这种微波在空气中衰减很快,因此采用波导管进行传输。他们的毫米波导管内径是5cm,传输的是单模,以毫米波为载体,把语言数字化,并通过毫米波导管传输,其能力为160Mbit/s(兆比特/秒)。米勒小组相信,把空腔波导概念推广到光波领域,有可能形成下一代新的通信技术。许多有名望的通信工程师也都是这样想的。

同类推荐
  • “核”来不怕:正确应对核辐射

    “核”来不怕:正确应对核辐射

    本书讲述了有关核能、核辐射及核安全防护的科普知识,指导读者科学地应对核辐射,避免不必要的对核(放射)的误解与恐慌等。
  • 不可不知的世界常识全集

    不可不知的世界常识全集

    随着现代社会与经济的快速发展,我们需要掌握的知识越来越多,对知识的渴求也越来越强烈。掌握更多的知识可以帮助我们开阔视野,提高文化修养和素质,让自己变得博学多才。
  • 一个情报学者的前瞻眼光

    一个情报学者的前瞻眼光

    《一个情报学者的前瞻眼光》通过许多经典案例,介绍了国外先进的科技制度、科技政策、科学教育手段和管理模式,对我国有很大的学习和借鉴价值。书中还有一些对科普、科幻和未来学的思考和畅想。多样性的生态系统中,不同个体的相互作用决定着系统的未来状态。大家都在摸索,调整自己,适应环境,同时也在改变着环境。失去了多样性的世界,是注定要死灭的世界。
  • 百科知识-科普新课堂:现代武器

    百科知识-科普新课堂:现代武器

    本书是针对酷爱军事的青少年编写的一部科普图书,如果把先进的武器装备比作勇猛的战士,那么先进的侦察技术就可以比作精明的指挥官。本书容科学性与趣味性于一体,详细地介绍了现代军事中的侦察通信技术,让青少年对军事有了更深的了解。
  • 走进科学丛书:破解科学的谜团

    走进科学丛书:破解科学的谜团

    千年的狂欢不会让人忘掉一切,纪元的更迭也无法带走一切疑问。在新的世纪里,仍然有许多长期困惑着我们的问题在心头萦绕。20世纪末,科学家们对哈勃太空望远镜观测到的一些现象进行分析后发现,宇宙大爆炸理论出现了矛盾,宇宙可能并非由大爆炸而开始的。
热门推荐
  • 红白喜事主持辞及典型致辞

    红白喜事主持辞及典型致辞

    您也可以尽览全书,在闲暇之余,您可从《红白喜事主持辞及典型致辞》中觅到华丽词章,让您在休闲时光里与美词相伴、满口生香。中国人历来爱热闹,婚丧嫁娶、节庆礼宴都要举办仪式。众宾客齐聚一堂之时,怎能没有司仪、主持以妙词新语为气氛添砖加瓦?更有各种酒席、宴会,也少不了祝酒致辞。如果您还在为“理屈词穷”而愁上加愁,就一定不能错过《红白喜事主持辞及典型致辞》。婚礼、宴会、生日、节日、葬礼、商务庆典及其他多种喜事庆典主持辞及经典致辞,《红白喜事主持辞及典型致辞》应有尽有,您尽可取己所需,在四方来客面前风头尽显。
  • 后来的你颠沛流离

    后来的你颠沛流离

    浪漫文案:奈美景说:“我梦想中的婚礼,应该是穿着凤冠霞帔端正坐着花轿等他来娶我。”后来,大队人马鸣锣开道,身后人举着游府迎亲之牌,唢呐声响于耳,新郎身着喜袍,骑着高头大马为她而来,身后跟着八抬大轿。甜甜文案:他是她的青梅竹马贺知书,日常互怼的开心果,表面上嫌弃得要死,心里在意得要命。看她被其他男生喜欢,他醋意大发,走上掐桃花,毁情书,丢礼物之路,甚至还自导自演在校园广播里把她包装成十恶不赦的坏姑娘,独自占有她。虐心文案:她们是青梅竹马,所有人都知道贺知书喜欢奈美景,可只有她装作不知道。她交往过很多男朋友,别人都说她花心。可只有她知道,那些男生都长得几分像贺知书。她宁愿选择与他长相酷似的男生交往,也从不沾染那个白衣少年。励志文案:他是她的青梅竹马贺知书,也是商业奇才。十三岁,他就自学编程创建通讯社交网页,成立小公司,花钱聘她为他的首席设计师。她是他的第一个用户,也是他公司唯一的员工。十五岁,网页注册用户破万。她们靠与学校周边的店铺合作,在网页上打广告达到盈利模式,赚到了人生第一桶金。
  • 阿司匹林不孤独

    阿司匹林不孤独

    你理想中的家是什么样子?超大的沙发,不用很高级,但要很软,整个人可以深陷里面,厨房里的砂锅咕嘟咕嘟作响,里面的鸡汤滋滋地飘出来香气,抵御着北方冬天的干冷,看着窗外四周的万家灯火,偶尔还是会有种孤单的感觉,突然“咔哒”一声门开了,你带着一身冷气进来笑着说:“我回来了。”跑过去抱住你,就像抱住了整个世界。
  • 皇帝薄情之皇后跑了

    皇帝薄情之皇后跑了

    时间让他们从相识相知到相爱,却无法相守。阮绥觉得越来越淡的感情让她无力适从,而殷荀却觉得江山给了她,心也给了她,她总得回报些什么。于是,他便要了她的余生。(本文纯属虚构,请勿模仿。)
  • 江湖风雨缥缈

    江湖风雨缥缈

    谁家郎儿不曾仗剑走天涯,谁家郎儿不曾快意恩仇,风雨飘摇,江湖又起波澜。
  • TFboys我们的故事

    TFboys我们的故事

    这里面是三只和三位美丽,霸气的女孩的相知,相识,想恋的故事。欢迎大家来看看!!!内容虚假,切勿当真!
  • 波外乐章

    波外乐章

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 快穿之铃铛要抱抱

    快穿之铃铛要抱抱

    假如你有一本神奇的书,你会做什么?穿越在各个世界里的木铃铛就有这样一本书,书中记载着很多人的故事,假如有一天你翻开这本书,希望你能找到属于你的故事
  • 男神校草爱上她

    男神校草爱上她

    他,一个为了她从以往的玩世不恭变成了时刻为她着想的国民好男人······她,一个为了他从而一次又一次地选择了逃避······到最后,她还不是被他乖乖收服,而他也渐渐收敛了起来?明明从前就认识,可却没认出来······小虐怡情,大虐伤身。此作品为莳沫本站首发兼处女作,写的不好还请多多包涵,沫沫爱你们~
  • 武傲天下

    武傲天下

    一个神奇的八荒聚灵鼎,让身为炎黄特警头号人物的武傲天忽然成为了异世一个无法修炼的废物,但是这个神奇的鼎,却玄妙的存在了鬼莫测,八荒葬神诀,让武傲天的修行道路,变成了一条逆天之路。笑傲红尘,武傲天下,天才之名,扬名八荒!