登陆注册
4412800000013

第13章 千古之谜

现代数论的创始人、法国大数学家费尔马(1601—1665),对不定方程极感兴趣,他在丢番图的《算术》这本书上写了不少注记。在第二卷问题8“给出一个平方数,把它表示为两个平方数的和”的那一页的空白处,他写道:“另一方面,一个立方不可能写成两个立方的和,一个四方不可能写成两个四方的和。一般地,每个大于2的幂不可能写成两个同次幂的和。”

换句话说,在n>2时,

xn+yn=zn(1)

没有正整数。这就是举世闻名的费尔马大定理。

“关于这个命题”,费尔马说:“我有一个奇妙的证明,但这里的空白太小了,写不下。”

人们始终未能找到弗尔马的“证明”。很多数学家攻克这座城堡,至今未能攻克。所以,费尔马大定理实际上是费尔马大猜测。人们在费尔马的书信与手稿中,只找到了关于方程

x4+y4=z4(2)

无正整数解的证明,恐怕他真正证明的“大定理”也就是这n=4的特殊情况。

既然(2)无正整数解,那么方程

x4k+y4k=z4k(3)

无解(如果(3)有解,即有正整数x0,y0,z0使

x04k+y04k=z04k(3)

那么(x0k)4+(y0k)4=(z0k)4

这与(2)无解矛盾!

同理,我们只要证明对于奇素数P,不定方程

xp+yp=zp(4)

无正整数解,那么费尔马大定理成立(因为每个整数n>2,或者被4整除,或者有一个奇素数p是它的因数)。

(4)的证明十分困难。在费尔马逝世以后90多年,欧拉迈出了第一步。他在1753年8月4日给哥德巴赫的信中宣称他证明了在p=3时,(4)无解。但他发现对p=3的证明与对n=4的证时截然不同。他认为一般的证明(即证明(4)对所有的素数p无正整数解)是十分遥远的。

一位化名勒布朗的女数学家索菲·吉尔曼(1776—1831)为解费尔马大定理迈出了第二步。她的定理是:

“如果不定方程x5+y5=z5有解,那么5|xyz。”

人们习惯把方程(4)的讨论分成两种情况。即:如果方程

xp+yp=zp

无满足p|xyz的解,就说对于p,第一种情况的费尔马大定理成立。

如果方程

xp+yp=zp

无满足p|xyz的解,就说对于p,第二种情况的费尔马大定理成立。

因此,吉尔曼证明了p=5,第一种情况的费尔马大定理成立。她还证明了:如果p与2p+1都是奇素数,那么第一种情况的费尔马大定理成立。她还进一步证明了对于≤100的奇素数p,第一种情况的费尔马大定理成立。

在欧拉解决p=3以后的90余年里,尽管许多数学家企图证明费尔马大定理,但成绩甚微。除吉尔曼的结果外,只解决了p=5与p=7的情况。

攻克p=5的荣誉由两位数学家分享,一位是刚满20岁、初出茅庐的狄利克雷,另一位是年逾70已享盛名的勒仕德。他们分别在1825年9月和11月完成了这个证明。

p=7是法国数学家拉梅在1839年证明的。

这样对每个奇素数p逐一进行处理,难度越来越大,而且不能对所有的p解决费尔马大定理。有没有一种方法可以对所有的p或者至少对一批p,证明费尔马大定理成立呢?德国数学家库麦尔创立了一种新方法,用新的深刻的观点来看费尔马大定理,给一般情况的解决带来了希望。

库麦尔利用理想理论,证明了对于p<100费尔马大定理成立。巴黎科学院为了表彰他的功绩,在1857年给他奖金3000法郎。

库麦尔发现伯努列数与费尔马大定理有重要联系,他引进了正规素数的概念:如果素数p不整除B2,B4……,Bp-3的分母,p就称为正规素数,如果p整除B2,B4……,Bp-3中某一个的分母就称为非正规素数。例如5是正规数,因为B2的分母是6而5×6。7也是正规素数,因为B2的分母是6,B4的分母是30,而7×6,7×30。

1850年,库麦尔证明了费尔马大定理对正规素数成立,这一下子证明了对一大批素数p,费尔马大定理成立。他发现在100以内只有37、59、67是非正规素数,在对这三个数进行特别处理后,他证明了对于p<100,费尔马大定理成立。

正规素数到底有多少?库麦尔猜测有无限个,但这一猜测一直未能证明。有趣的是,1953年,卡利茨证明了非正规素数的个数是无限的。

近年来,对费尔马大定理的研究取得了重大进展。1983年,西德的伐尔廷斯证明了“代数数域K上的(非退化的)曲线F(x,y)=0,在出格g>1时,至多有有限多个K点。”

作为它的特殊情况,有理数域Q上的曲线

xn+yn-1=0(5)

在亏格g>1时,至多有有限多个有理点。

这里亏格g是一个几何量,对于曲线(5),g可用

g=(n-1)(n-2)2

来计算,由(6)可知在n>3时,(5)的亏格大于1,因而至多有有限多个有理点(x,y)满足(5)。

方程

xn+yn=2n

可以化成

x2n+y4n-1=0

改记x2,y2为(x,y),则(7)就变成(5)。因此由(5)只有有限多个有理数解x、y,立即得出(1)只有有限多个正整数解x、y、z,但这里把x、y、z与kx、ky、kz(k为正整数)算作同一组解。

因此,即使费尔马大定理对某个n不成立,方程(7)有正整数解,但解也至多有有限组。

1984年,艾德勒曼与希思布朗证明了第一种情况的费尔马大定理对无限多个p成立。他们的工作利用了福夫雷的一个重要结果:有无穷多个对素数p与q,满足q|p-1及q>p2/3个。而福夫雷的结果又建立在对克路斯特曼的一个新的估计上,后者引起了不少数论问题的突破。

现在还不能肯定费尔马大定理一定正确,尽管经过几个世纪的努力。瓦格斯塔夫在1977年证明了对于p<125000,大定理成立。最近,罗寒进一步证明了对于p<4100万,大定理成立。但是,费尔马大定理仍然是个猜测。如果谁能举出一个反例,大定理就被推翻了。不过反例是很难举的。

同类推荐
热门推荐
  • 醉尘缘

    醉尘缘

    她为了他放弃了千年的修为,坠落凡尘。而他为了天下苍生,却对她痛下杀手。随后七星下界,四象轮回。文曲星君轮回成人经历三生爱恋,贞廉星君为爱出家为道,武曲星君为爱血洗皇城……爱恨情仇,江湖恩怨
  • 全球颤抖

    全球颤抖

    全球灵异爆发,道士组成联盟,拯救世界,传播真善美。PS:这本书一点都不吓人,全是对读者纯纯的爱。
  • 绝色美女的贴身医王

    绝色美女的贴身医王

    我从山中来,挟医术,武术,来到这花花都市之中,我的魅力无人可挡!
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 溺宠,妖妃要逆天

    溺宠,妖妃要逆天

    本尊与天齐寿,你是吗?她挑眉不是。他含笑本尊由混沌之力孕育而成,你是吗?她的手不安分了不是。他眼中笑意甚浓本尊为妖中之皇,你是吗?她的双手隔着衣服抚摸着不是。他嘴角微勾如此,你不认为本尊应该在上面吗?她双手已经伸入他衣中不认为。他将坐在他腿上的她一把推倒在床上,狼性大发~次日,他与她同在温泉中“本座什么都不是,可是这片天地都是我创造的,唯独你。”“你居然开外挂!”“没办法,谁叫我是主神呢。”“本尊不管,本尊也要开外挂!”“可以,你想开什么。”“本尊要在上面!”“真是磨人的小妖精,来吧!”“啊呜~”Intheend。主神完胜!
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 天行

    天行

    号称“北辰骑神”的天才玩家以自创的“牧马冲锋流”战术击败了国服第一弓手北冥雪,被誉为天纵战榜第一骑士的他,却受到小人排挤,最终离开了效力已久的银狐俱乐部。是沉沦,还是再次崛起?恰逢其时,月恒集团第四款游戏“天行”正式上线,虚拟世界再起风云!
  • 空池

    空池

    这一个故事,类似于琅琊榜类型!讲述一个武将复城池的,可能跟琅琊榜无比,但是我曾努力。。。。。。
  • 婉后传

    婉后传

    元鼎元年,萧家庶房长女萧婉奉旨入宫.三年之后,萧家正房嫡女入宫,一族无二妃,她萧婉是就此认命还是搏上一搏?拼了性命生下的孩子,却成为后宫的棋子,她萧婉是选择反抗还是顺从?原以为可以信赖的亲信,转眼间却成了宫妃,而她却是被栽赃陷害打入冷宫,她是选择在冷宫孤老,还是放弃一切,重新踏上这条不归路?这后宫诸人,皇上,皇后,太后,薇夫人,月妃,怜贵嫔,梁嫔...有萧婉爱过的,恨过的,交好过的...当她终于站在这后宫的至高位上,却觉得内心凄凉,亲情,爱情,友情,她最后到底还拥有什么?什么是世家女的悲哀,什么又是她萧婉的悲哀?后宫四十载,且看她如何一步一步踏上这条用血泪铺成的后宫之路。
  • 宗长在此不服来战

    宗长在此不服来战

    “你的梦想是什么?”“清仓央烂局,闯三界六妄。”